

POSTAL BOOK PACKAGE 2026

MECHANICAL ENGINEERING

CONVENTIONAL Practice Sets

CONTENTS

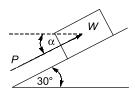
ENGINEERING MECHANICS

1.	Equilibrium of Forces and Moment
2.	Analysis of Simple Trusses
3.	Friction
4.	Kinematics of Translational and Rotational Motion 16 - 24
5.	Impulse and Momentum
6.	Work and Energy
7.	Center of Gravity and Moment of Inertia

Equilibrium of Forces and Moment

Practice Questions

Determine the magnitude and direction of the smallest force P, which will maintain the body of weight W = 300 N on an inclined smooth plane as shown in figure is in equilibrium.



Solution:

The body is acted upon by three forces, namely the action of gravity force W, the applied force P and the reaction R. Since these three forces are in equilibrium, the vectors representing them must build a closed triangle, we begin with the known vector \overline{bc} representing to a certain scale, the weight of the body, and then draw the line as parallel to the R.

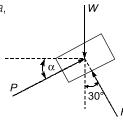
The side \overline{cd} will be minimum if it is perpendicular to line aa,

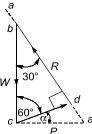
that is P will be minimum, if it is perpendicular to aa.

From the triangle bcd,
$$\angle c = 90^{\circ} - 30^{\circ} = 60^{\circ}$$

$$\alpha = 90^{\circ} - 60^{\circ} = 30^{\circ}$$

and using the triangle bcd, we obtain,





$$P = W \sin 30^{\circ} = \frac{W}{2} = 150 \text{ N}$$

Alternate solution: After drawing the free-body diagram of the body of above, then applying the Lami's theorem to the free-body diagram of the body as shown in figure we get

$$\frac{W}{\sin(90^{\circ} - \alpha + 30^{\circ})} = \frac{P}{\sin(\pi - 30^{\circ})} = \frac{R}{\sin(90^{\circ} + \alpha)}$$

Using the first two of the equation we obtain

$$\frac{W}{\cos(30^{\circ} - \alpha)} = \frac{P}{\sin 30^{\circ}}$$
$$P = \frac{W \sin 30^{\circ}}{\cos(30^{\circ} - \alpha)}$$

From equation, P will be minimum, if the denominator is maximum, i.e.

$$\cos(30^{\circ} - \alpha) = 1$$

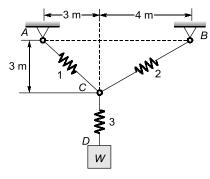
$$\Rightarrow \qquad 30^{\circ} - \alpha = 0$$

$$\Rightarrow \qquad \alpha = 30^{\circ}$$

and substituting this value into equation, we get the value of

$$P = W \sin 30^{\circ} = 150 \text{ N}$$
, as before

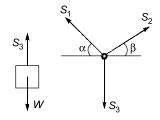
Determine the stretch in each spring for equilibrium of the weight W = 40 N block as shown in figure. The springs are in equilibrium position. The stiffness of each spring is given as: $k_1 = 40 \text{ N/m}$, $k_2 = 50 \text{ N/m}$, and $k_3 = 60 \text{ N/m}$



Solution:

Draw the free-body diagram of the body as shown in figure.

Only two forces are acting on the body, gravity force W and the reactive force caused by the spring S_3 . Since the body is in equilibrium, from the law of equilibrium of two forces,



$$S_3 = W$$

Now, draw the free-body diagram of the point C. At the joint, C three forces are acting all are reactive forces caused by the springs. The angles that springs S_1 and S_2 make with the horizontal are calculated as below:

$$\tan\alpha = \frac{3}{3} = 1 \Rightarrow \alpha = 45^{\circ}$$

$$\tan \beta = \frac{3}{4} \Rightarrow \beta = 36.87^{\circ}$$

Since the joint C is in equilibrium, applying Lami's theorem, we obtain

$$\frac{S_1}{\sin\left(\frac{\pi}{2} + \beta\right)} = \frac{S_2}{\sin\left(\frac{\pi}{2} + \alpha\right)} = \frac{S_3}{\sin(\pi - \alpha - \beta)}$$

From equation we get

$$S_1 = \frac{S_3 \cos \beta}{\sin(\alpha + \beta)} = \frac{W \cos \beta}{\sin(\alpha + \beta)}$$

$$S_2 = \frac{S_3 \cos \alpha}{\sin(\alpha + \beta)} = \frac{W \cos \alpha}{\sin(\alpha + \beta)}$$

$$EF = EC + CF = r_1 + r_2 = 100 + 50 = 150 \text{ mm}$$
and
$$EH = OI - OG - BI$$

$$OI = a = 200 \text{ mm}$$

$$OG = r_2 = 50 \text{ mm}$$

$$BI = EI \sin \frac{\alpha}{2} \left[\because EI = \frac{BE}{\cos \frac{\alpha}{2}} = \frac{r_1}{\cos 30^\circ} = \frac{100}{\cos 30^\circ} = 115.47 \text{ mm} \right]$$

$$\therefore BI = 115.47 \sin 30^\circ = 57.74 \text{ mm} \text{ and}$$

$$\therefore EH = 200 - 50 - 57.74 = 92.26 \text{ mm}$$

 $\cos \beta = \frac{EH}{FF} = \frac{92.26}{150} = 0.615$

$$\beta = 52.05^{\circ}$$

$$R_c \cos \beta = R_d$$

$$R_c \sin \beta = Q$$

Substituting the values for β and Q in the above equations and solving for R_c and $R_{d'}$, we obtain

$$R_c = \frac{Q}{\sin\beta} = \frac{800}{\sin 52.05} = 1014.52 \,\mathrm{N}$$

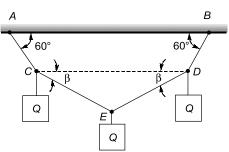
$$R_d = R_c \cos \beta = 1014.52 \times \cos 52.05^\circ = 623.9 \text{ N}$$

$$R_a = R_c \frac{\cos \beta}{\sin \alpha} = 1014.52 \times \frac{\cos 52.05}{\sin 60} = 720.42 \text{ N}$$

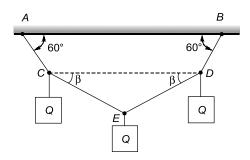
$$R_b = R_c \sin \beta + P - R_a \cos \alpha$$

=
$$1014.52 \times \sin 52.05^{\circ} + 2000 - 720.42 \cos 60^{\circ} = 2439.79 \text{ N}$$

Q3 On the string *ACEDB* are hung three equal weights *Q* symmetrically placed with respect to the vertical line through the mid-point *E*. Determine the value of the angles *b* if the other angles are as shown in the figure.

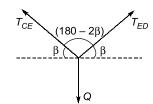


Solution:



At point *E*,

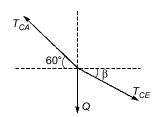
By symmetry,



$$T_{CE} = T_{ED}$$
 Lami's theorem
$$\frac{T_{CE}}{Sin(90+\beta)} = \frac{T_{ED}}{\sin(90+\beta)} = \frac{Q}{\sin(180-2\beta)}$$

$$T_{CE} = \frac{Q\cos\beta}{\sin2\beta} = \frac{Q}{2\sin\beta}$$

At point C:



Lami's theorem

$$\frac{T_{CA}}{\sin(90-\beta)} = \frac{T_{CE}}{\sin 150} = \frac{Q}{\sin(120+\beta)}$$

Now,

$$T_{CE} = \frac{Q \times \sin 150}{\sin(120 + \beta)}$$

...(ii)

...(i)